4.5 Article

Aquatic macrophytes and macroinvertebrate predators affect densities of snail hosts and local production of schistosome cercariae that cause human schistosomiasis

期刊

PLOS NEGLECTED TROPICAL DISEASES
卷 14, 期 7, 页码 -

出版社

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pntd.0008417

关键词

-

资金

  1. National Science Foundation [EF-1241889, OCE-1829509, EAR-1646708, EAR-1360330]
  2. National Institutes of Health [R01GM109499, R01TW010286, K01AI091864, R01TW010286-01]
  3. Bill and Melinda Gates Foundation
  4. Stanford GDP SEED [1183573-100-GDPAO]
  5. SNAP-NCEAS working group Ecological levers for health: Advancing a priority agenda for Disease Ecology and Planetary Health in the 21st century
  6. Michigan Society of Fellows at the University of Michigan
  7. Sloan Research Fellowship from the Alfred P. Sloan Foundation
  8. University of Washington Innovation Award
  9. National Science Foundation (CNH grant) [1414102]
  10. Division Of Behavioral and Cognitive Sci
  11. Direct For Social, Behav & Economic Scie [1414102, GRANTS:13643572] Funding Source: National Science Foundation

向作者/读者索取更多资源

Background Schistosomiasis is responsible for the second highest burden of disease among neglected tropical diseases globally, with over 90 percent of cases occurring in African regions where drugs to treat the disease are only sporadically available. Additionally, human re-infection after treatment can be a problem where there are high numbers of infected snails in the environment. Recent experiments indicate that aquatic factors, including plants, nutrients, or predators, can influence snail abundance and parasite production within infected snails, both components of human risk. This study investigated how snail host abundance and release of cercariae (the free swimming stage infective to humans) varies at water access sites in an endemic region in Senegal, a setting where human schistosomiasis prevalence is among the highest globally. Methods/Principal findings We collected snail intermediate hosts at 15 random points stratified by three habitat types at 36 water access sites, and counted cercarial production by each snail after transfer to the laboratory on the same day. We found that aquatic vegetation was positively associated with per-capita cercarial release by snails, probably because macrophytes harbor periphyton resources that snails feed upon, and well-fed snails tend to produce more parasites. In contrast, the abundance of aquatic macroinvertebrate snail predators was negatively associated with per-capita cercarial release by snails, probably because of several potential sublethal effects on snails or snail infection, despite a positive association between snail predators and total snail numbers at a site, possibly due to shared habitat usage or prey tracking by the predators. Thus, complex bottom-up and top-down ecological effects in this region plausibly influence the snail shedding rate and thus, total local density of schistosome cercariae. Conclusions/Significance Our study suggests that aquatic macrophytes and snail predators can influence per-capita cercarial production and total abundance of snails. Thus, snail control efforts might benefit by targeting specific snail habitats where parasite production is greatest. In conclusion, a better understanding of top-down and bottom-up ecological factors that regulate densities of cercarial release by snails, rather than solely snail densities or snail infection prevalence, might facilitate improved schistosomiasis control. Author summary Over 800 million people are at risk of schistosomiasis and environmental factors that regulate densities of cercariae parasites that infect humans remain poorly understood. We sampled a spatially extensive area at 36 water-access points in northern Senegal, and quantified densities of snail intermediate hosts, snail predators, and aquatic vegetation in each sample, as well as cercariae released from snails after they were brought to the laboratory. We found that the quantity of submerged aquatic vegetation, particularlyCeratophyllumspp., was positively associated with schistosome cercariae released per infected snail, and total potential cercariae released by the collected snails per water access site. In contrast, the abundance of aquatic predators near infected snails (in the same sweep) was negatively associated with the per-capita cercarial release by infected snails, but positively associated with total snail abundance per site. Additionally, snail densities and potential cercarial densities (estimated as the sum of cercariae released by all collected, infected snails at a site) were only weakly correlated, suggesting that snail densities alone might not accurately reflect total potential of those snails to emit schistosome cercariae. Overall, a better understanding of aquatic factors that can influence the production of schistosome cercariae under field conditions, rather than snail host abundance alone, might facilitate improvements in schistosomiasis monitoring and control.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据