4.2 Article

Edible Bird's Nest attenuates high fat diet-induced oxidative stress and inflammation via regulation of hepatic antioxidant and inflammatory genes

期刊

出版社

BMC
DOI: 10.1186/s12906-015-0843-9

关键词

Antioxidants; Edible bird's nest; High fat diet; Inflammation; Oxidative stress

资金

  1. Ministry of Science, Technology and Innovation (MOSTI), Malaysia [02-01-04-SF1453]

向作者/读者索取更多资源

Background: Edible Bird's nest (EBN) is an antioxidant-rich supplement that is popular in many parts of Asia. Its antioxidant and anti-inflammatory properties have been reported using in vitro system. This paper aimed to determine the antioxidant and anti-inflammatory effects of EBN in in high fat diet induced rats model. Methods: We evaluate if those properties can be translated in rats. High fat diet (HFD) was fed to rats for 12 weeks to determine its effects on oxidative stress and inflammation, and compared with HFD + Simvastatin and HFD + EBN (2.5 or 20 %). Weights were measured weekly, while serum and hepatic markers of oxidative stress (total antioxidant status and TBARS) and inflammation (interleukin 6 [IL-6], C-reactive protein [CRP] and tumor necrosis factor alpha [TNF-alpha]) were determined at the end of the intervention. In addition, transcriptional changes in hepatic antioxidant (superoxide dismutase, glutathione reductase, glutathione peroxidase) and inflammation (C-reactive protein, chemokine [C-C] motif 2, nuclear factor kappa beta 1 and tumor necrosis factor alpha) genes were evaluated. Results: The results showed increases in oxidative stress (raised TBARS and lowered total antioxidant status) and inflammatory markers (raised CRP, IL-6 and TNF-alpha) in HFD induced rats with corresponding attenuation of antioxidant gene expression and potentiation of inflammatory gene expression. EBN on the other hand attenuated the HFD-induced inflammation and oxidative stress and produced overall better outcomes in comparison with simvastatin. Conclusions: In aggregate, the results support the evidence-based utilization of EBN as a supplement for preventing obesity-related inflammation and oxidative stress in rats. These promising results can open up opportunities for translating the benefits of EBN to humans.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据