4.8 Article

Small Molecule Dysregulation of TEAD Lipidation Induces a Dominant-Negative Inhibition of Hippo Pathway Signaling

期刊

CELL REPORTS
卷 31, 期 12, 页码 -

出版社

CELL PRESS
DOI: 10.1016/j.celrep.2020.107809

关键词

-

向作者/读者索取更多资源

The transcriptional enhanced associate domain (TEAD) family of transcription factors serves as the receptors for the downstream effectors of the Hippo pathway, YAP and TAZ, to upregulate the expression of multiple genes involved in cellular proliferation and survival. Recent work identified TEAD S-palmitoylation as critical for protein stability and activity as the lipid tail extends into a hydrophobic core of the protein. Here, we report the identification and characterization of a potent small molecule that binds the TEAD lipid pocket (LP) and disrupts TEAD S-palmitoylation. Using a variety of biochemical, structural, and cellular methods, we uncover that TEAD S-palmitoylation functions as a TEAD homeostatic protein level checkpoint and that dysregulation of this lipidation affects TEAD transcriptional activity in a dominant-negative manner. Furthermore, we demonstrate that targeting the TEAD LP is a promising therapeutic strategy for modulating the Hippo pathway, showing tumor stasis in a mouse xenograft model.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据