4.7 Article

Identification and characterization of cytosolic malate dehydrogenase from the liver fluke Fasciola gigantica

期刊

SCIENTIFIC REPORTS
卷 10, 期 1, 页码 -

出版社

NATURE PORTFOLIO
DOI: 10.1038/s41598-020-70202-y

关键词

-

资金

  1. DST-INSPIRE

向作者/读者索取更多资源

The liver fluke zoonoses, Fasciola spp. are parasitic helminths infecting humans and animals globally. Recent sequencing of the genome of Fasciola gigantica has provided a basis to understand the biochemistry of this parasite. Here, we identified the cytosolic malate dehydrogenase in F. gigantica (FgMDH) and characterized the enzyme biochemically and structurally. F. gigantica encodes a single cytosolic MDH, a key enzyme of the citric acid cycle. It catalyzes the reversible oxidation of malate to oxaloacetate using NAD(+). The Fgmdh gene was amplified and cloned for expression of the recombinant protein. The purified protein showed a molecular weight of similar to 36 kDa that existed in a dimeric form in solution. The recombinant enzyme was catalytically active as it catalyzed both forward and reverse reactions efficiently. The kinetic parameters were determined for both directions. The structure of FgMDH and human MDH were modeled and validated. The superimposition of both the model structures showed overall structural similarity in the active site loop region, however, the conformation of the residues was different. Molecular docking elucidated the binding sites and affinities of the substrates and cofactors to the enzyme. Simulation of molecular dynamics and principal component analysis indicated the stability of the systems and collective motions, respectively. Understanding the structural and functional properties of MDH is important to better understand the roles of this enzyme in the biochemistry of the parasite.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据