4.7 Article

A parametric model for barred equilibrium beach profiles: Two-dimensional implementation

期刊

COASTAL ENGINEERING
卷 117, 期 -, 页码 166-175

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.coastaleng.2016.07.010

关键词

Bathymetry estimation; Remote sensing; Nearshore; Equilibrium beach; Parametric profiles

资金

  1. Office of Naval Research through Naval Research Laboratory

向作者/读者索取更多资源

A method is proposed for estimating approximate 2DH bathymetry including longshore variable shoreline and sand bar systems. The method is based on, but extends, a previous 1DH model of Holman et al. (2014) by assuming that this 1DH equilibrium barred bathymetry can be applied for any offshore location if the corresponding mean shoreline orientation is taken to be the local average over a longshore span that is K times the offshore distance. Thus locations close to the beach are sensitive to shoreline and bar details while more seaward locations are steadily less sensitive. The model was tested against 14 ground truth surveys, collected over two years and under widely ranging environmental condition, spanning a 500 by 1000 m region. Models inputs for the shoreline and sand bar positions were extracted from measured bathymetries for these tests (but would be derived from other sources in real applications) while deep-water inputs were found from a single deep-water survey. The model yielded complete 2DH bathymetry maps that were a very good approximation of ground truth. The mean bias and rms error over the full region and data set were 027 m and 0.49 m respectively and proxy bathymetries were visually very similar to ground truth. The largest source of error was occasional cross-shore misplacements of otherwise realistic looking sand bars. Results were only weakly dependent on the value of K when tested over a factor of four and the default value of 1.0 is recommended. Performance statistics using input locations for the shoreline and bar crest that were manually digitized from breaking patterns in rectified optical time exposure images were no worse than bathymetry-based inputs. Hydrodynamic predictions using these bathymetries would be a substantial improvement over those from monotonic or even barred 1DH equilibrium proxy bathymetries. Published by Elsevier B.V.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据