4.7 Article

Properties enhancement of carboxymethyl cellulose with thermo-responsive polymer as solid polymer electrolyte for zinc ion battery

期刊

SCIENTIFIC REPORTS
卷 10, 期 1, 页码 -

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/s41598-020-69521-x

关键词

-

资金

  1. Second Century Foundation (C2F)
  2. Chulalongkorn University
  3. Grant for Development of New Faculty Staff, Ratchdaphiseksomphot Endowment fund
  4. Rachadapisek Sompoch Project, Chulalongkorn University [CU_GR_63_51_62_01]

向作者/读者索取更多资源

A novel polymer host from carboxymethyl cellulose (CMC)/poly(N-isopropylacrylamide) (PNiPAM) was developed for a high safety solid polymer electrolyte (SPE) in a zinc ion battery. Effects of the PNiPAM loading level in the range of 0-40% by weight ( wt%) on the chemical, mechanical, thermal, and morphological properties of the CMC/PNiPAMx films (where x is the wt% of PNiPAM) were symmetrically investigated. The obtained CMC/PNiPAMx films showed a high compatibility between the polymers. The CMC/PNiPAM20 blend showed the greatest tensile strength and modulus at 37.9 MPa and 2.1 GPa, respectively. Moreover, the thermal degradation of CMC was retarded by the addition of PNiPAM. Scanning electron microscopy images of CMC/PNiPAM20 revealed a porous structure that likely supported Zn2+ movement in the SPEs containing zinc triflate, resulting in the high Zn2+ ion transference number (0.56) and ionic conductivity (1.68x10(-4) S cm(-1)). Interestingly, the presence of PNiPAM in the CMC/PNiPAMx blends showed a greater stability during charge-discharge cyclic tests, indicating the ability of PNiPAM to suppress dendrite formation from causing a short circuit. The developed CMC/PNiPAM20 based SPE is a promising material for high ionic conductivity and stability in a Zn ion battery.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据