4.7 Article

Elevational is the main factor controlling the soil microbial community structure in alpine tundra of the Changbai Mountain

期刊

SCIENTIFIC REPORTS
卷 10, 期 1, 页码 -

出版社

NATURE PORTFOLIO
DOI: 10.1038/s41598-020-69441-w

关键词

-

向作者/读者索取更多资源

To reveal the self-coordination mechanism of the fragile ecosystem of alpine tundra, we explored the relationship between soil microorganisms and other elements. On the alpine tundra of the Changbai Mountain, different vegetation types, altitudes and soil properties were selected as driving factors of soil microbial community. Soil microbial community, C- and N-cycling functional microbial and fungal biomass were analyzed. Structural equation model was used to study the control of biotic and abiotic factors in rhizosphere soil microbial community. The results showed that the pH value of soil had the strongest direct impact on the diversity and community structure of soil microorganisms, and had significant correlation with most of the C- and N-cycling functional microbial; organic carbon and vegetation also have strongest direct effect on fungal biomass, but all of them were not main factors influence soil microbial community structure, the elevation was the main controlling factor. In addition, the elevation mainly through indirect action affects the soil microbial community by driving distribution of plant species, soil organic carbon and pH value. This finding highlighted that elevation was the main predictor to determine rhizosphere microbial community structure but not vegetation in alpine tundra of Changbai Mountain.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据