4.7 Article

Fluorescent recognition of Fe3+ in acidic environment by enhanced-quantum yield N-doped carbon dots: optimization of variables using central composite design

期刊

SCIENTIFIC REPORTS
卷 10, 期 1, 页码 -

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/s41598-020-68390-8

关键词

-

资金

  1. University Putra Malaysia [GP-IPS/2017/9556800]

向作者/读者索取更多资源

A versatile synthetic approach for development of highly fluorescent nitrogen-doped carbon dots (N-CDs) from carboxymethylcellulose in the presence of linear polyethyleneimine (LPEI) has been developed. According to single factor method, central composite design incorporated with response surface methodology matrix was applied to find and model optimal conditions for the temperature (220-260 degrees C), duration (1-3 h) and LPEI weight (0.5-1.5%). The statistical results show that duration was the most significant parameter for efficient carbonization conversion rate in comparison with temperature and LPEI weight. The reduced cubic model (R-2=0.9993) shows a good correlation between the experimental data and predicted values. The optimal variables were temperature of 260 degrees C, duration of 2 h and LPEI weight of 1%. Under these conditions, quantum yield of up to 44% was obtained. The numerically optimized N-CDs have an average size of 3.4 nm with graphitic nature owing to the abundant amino species incorporated into the carbon core framework. The blue-green N-CDs possess emission dependent upon the solvent polarity, wide pH stability with enhanced emission in an acidic environment. Impressively, the N-CDs show long-shelf-life for up to 1 year with no noticeable precipitation. The N-CDs were able to recognize a high concentration of Fe3+ ions with a detection limit of 0.14 mu M in acidic solution owing to the special coordination for Fe3+ to be captured by electron-donating oxygen/ amino groups around N-CDs. Moreover, the N-CDs can also be used as a new kind of fluorescent ink for imaging applications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据