4.7 Article

Ecofriendly biodegradation of Reactive Black 5 by newly isolated Sterigmatomyces halophilus SSA1575, valued for textile azo dye wastewater processing and detoxification

期刊

SCIENTIFIC REPORTS
卷 10, 期 1, 页码 -

出版社

NATURE PORTFOLIO
DOI: 10.1038/s41598-020-69304-4

关键词

-

资金

  1. National Natural Science Foundation of China [31772529]
  2. National Key R&D Program of China [2018YFE0107100]
  3. Priority of Academic Program Development of Jiangsu Higher Education Institutions [PAPD 4013000011]

向作者/读者索取更多资源

A total of seven yeast strains from 18 xylanolytic and/or xylose-fermenting yeast species isolated from the wood-feeding termite Reticulitermes chinenesis could efficiently decolorize various azo dyes under high-salt conditions. Of these strains, a novel and unique azo-degrading and halotolerant yeast, Sterigmatomyces halophilus SSA1575, has been investigated in this study. This strain could significantly decolorize four combinations of a mixture of dyes. It showed a high capability for decolorizing Reactive Black 5 (RB5) even at 1,500 mg L-1. The strain SSA1575 still showed a high capability for decolorizing a 50 mg L-1 RB5 with a salt mixing at a NaCl concentration of up to 80 g L-1. It also exhibited significant ability to decolorize repeated additions of dye aliquots, with a reduction in time of up to 18 h. Most of the tested carbon and nitrogen sources could significantly enhance a RB5 decolorization. However, this process was inhibited by the addition of sucrose and sodium nitrate. NADH-dichlorophenol indophenol (NADH-DCIP) reductase and lignin peroxidase were determined as the key reductase and oxidase of S. halophilus SSA1575. Finally, strain SSA1575, can effectively detoxify RB5 into non-toxic products. Overall, S. halophilus SSA1575, might be a promising halotolerant yeast valued for the treatment of various textile effluents with high salinity.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据