4.7 Article

Switch of macrophage fusion competency by 3D matrices

期刊

SCIENTIFIC REPORTS
卷 10, 期 1, 页码 -

出版社

NATURE RESEARCH
DOI: 10.1038/s41598-020-67056-9

关键词

-

向作者/读者索取更多资源

Foreign body reaction reflects the integration between biomaterials and host cells. At the implantation microenvironment, macrophages usually fuse into multinuclear cells, also known as foreign body giant cells, to respond to the biomaterial implants. To understand the biomaterial-induced macrophage fusion, we examined whether biomaterial alone can initiate and control the fusion rate without exogenous cytokines and chemicals. We introduced a collagen-based 3D matrix to embed Raw264.7 cell line and primary rat bone marrow-derived macrophages. We found the biomaterial-stimuli interacted regional macrophages and altered the overall fusogenic protein expressions to regulate the macrophage fusion rate. The fusion rate could be altered by modulating the cell-matrix and cell-cell adhesions. The fused macrophage morphologies, the nuclei number in the fused macrophage, and the fusion rates were matrix dependent. The phenomena were also observed in the in vivo models. These results suggest that the biomaterial-derived stimuli exert similar functions as cytokines to alter the competency of macrophage fusion as well as their drug sensitivity in the biomaterial implanted tissue environment. Furthermore, this in vitro 3D-matrix model has the potential to serve as a toolbox to predict the host tissue response on implanted biomaterials.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据