4.4 Article

Designing of benzothiazole based non-fullerene acceptor (NFA) molecules for highly efficient organic solar cells

期刊

出版社

ELSEVIER
DOI: 10.1016/j.comptc.2020.112833

关键词

Benzodithiazole; Acceptor; Open-circuit voltage; Small molecules; Charge transfer

资金

  1. Govt. of the Punjab, Pakistan

向作者/读者索取更多资源

To enhance the efficiency of organic solar cells (OSCs), five non-fullerene pi-conjugated acceptor molecules namely BTM1, BTM2, BTM3, BTM4 and BTM5 are designed from recently reported 16.5% efficient acceptor molecule BTP-Cl. The molecules in the present quantum chemical investigation consist of benzothiazole (BT) core with different chemical species on the terminal side. The optoelectronic study of BTM1-BTM5 reveals that BTM3 and BTM4 molecules are superior with respect to absorption range found at the wavelengths of 780 and 791 nm as compared to 746 nm of reference molecule BTP-Cl. Frontier molecular orbital (FMO) and transition density matrix (TDM) analysis are performed that give basic information about the distribution of charges among investigated molecules. All investigated molecules exhibit charge density spread over the entire molecules. The BTM4 and BTM5 molecules efficiently transfer their electron densities from highest occupied molecular orbital (HOMO) to lowest unoccupied molecular orbital (LUMO) with narrow bandgaps of 1.86 eV and 2.14 eV respectively. The electron mobility for BTM3 (0.00527), BTM4 (0.005820) and BTM5 (0.00539) are found less than BTP-Cl (0.00643). Similarly, BTM5 gives the least value of hole mobility (0.00558) as compared to BTP-Cl (0.00803). The binding energies of these molecules are also observed less (0.28 eV, 0.29 eV and 0.33 eV for BTM3, BTM4 and BTM5) in gas phase than BTP-Cl (0.35 eV). Also, BTM5 is tested with donor polymer PTB7-Th that provides further evidence for their interactions. It turned out that the structural tailoring at terminals can tune effectively the frontier molecular orbital energy levels, band gap, absorption spectra, open-circuit voltage, reorganization energy and binding energy value in investigated molecules. Our results suggest that the investigated molecules can serve as fine acceptor materials. Additionally, some investigated molecules can also be used as a hole and/or electron transport materials for OSCs.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据