4.6 Article

Characterizations of nickel mesh and nickel foam current collectors for supercapacitor application

期刊

ARABIAN JOURNAL OF CHEMISTRY
卷 13, 期 8, 页码 6838-6846

出版社

ELSEVIER
DOI: 10.1016/j.arabjc.2020.06.036

关键词

Supercapacitor; Nickel foam; Nickel mesh; Redox reaction; Cyclic voltammetry

资金

  1. RUI grant [USM-RUI 1010/PBAHAN/8014046]

向作者/读者索取更多资源

Nickel (Ni) current collectors having a three-dimensional and porous structure are considered attractive contestants for high-efficiency supercapacitors. Therefore, Ni current collectors have a unique architecture and outstanding electrochemical properties. This study reports the effect of electrochemical characterizations on the electrochemical behavior and physical properties of Ni mesh and Ni foam. Cyclic voltammetry (CV) and galvanostatic charge discharge (GCD) are used to examine the electrochemical properties and life span of the Ni mesh and Ni foam as a current collector in a supercapacitor application. Structural and microstructural characterizations are performed to verify the formation of an oxide layer after 1000 cycles of CV analysis. Results show that Ni foam can increase the yield electrochemical performance of the supercapacitor. Ni foam present better efficiency (35 F g(-1)) compared to the Ni mesh (12 F g(-1)) at 10 mV s(-1) scan rate by using 2 mg imaginary mass of active material. This result shows that Ni foam has good electrochemical performance and reversibility, higher pseudocapacitance, weaker polarization, and enhance rotating performance as to Ni mesh. The porous structure of Ni foam is in control for improving of the electrochemical properties, therefore, the electrochemical region was increased and shortened ion diffusion. Structural analysis shows that Ni mesh and Ni foam are oxidized after the electrochemical analysis and transformed to nickel oxide hydroxide (NiOOH). Higher specific surface area between the electrode and electrolyte leads to excellent electrochemical and pseudocapacitive performance of the Ni foam compared to the Ni mesh, even if the materials of current collectors are the same. Hence, the physical structure of the current collectors have a critical part in improving the energy density of the supercapacitor. (C) 2020 The Author(s). Published by Elsevier B.V. on behalf of King Saud University.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据