4.8 Article

Stabilized Co-Free Li-Rich Oxide Cathode Particles with An Artificial Surface Prereconstruction

期刊

ADVANCED ENERGY MATERIALS
卷 10, 期 35, 页码 -

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/aenm.202001120

关键词

cathode materials; Li ion batteries; surface reconstruction

资金

  1. Wuxi Weifu High-Technology Group Co., Ltd.
  2. DOE Office of Science [DE-SC0012704]
  3. National Science Foundation [1541959]

向作者/读者索取更多资源

Li-rich metal oxide (LXMO) cathodes have attracted intense interest for rechargeable batteries because of their high capacity above 250 mAh g(-1). However, the side effects of hybrid anion and cation redox (HACR) reactions, such as oxygen release and phase collapse that result from global oxygen migration (GOM), have prohibited the commercialization of LXMO. GOM not only destabilizes the oxygen sublattice in cycling, aggravating the well-known voltage fading, but also intensifies electrolyte decomposition and Mn dissolution, causing severe full-cell performance degradation. Herein, an artificial surface prereconstruction (ASR) for Li(1.2)Mn(0.6)Ni(0.2)O(2)particles with a molten-molybdate leaching is conducted, which creates a crystal-dense anion-redox-free LiMn(1.5)Ni(0.5)O(4)shell that completely encloses the LXMO lattice (ASR-LXMO). Differential electrochemical mass spectroscopy and soft X-ray absorption spectroscopy analyses demonstrate that GOM is shut down in cycling, which not only stabilizes HACR in ASR-LXMO, but also mitigates the electrolyte decomposition and Mn dissolution. ASR-LXMO displays greatly stabilized cycling performance as it retains 237.4 mAh g(-1)with an average discharge voltage of 3.30 V after 200 cycles. More crucially, while the pristine LXMO cycling cannot survive 90 cycles in a pouch full-cell matched with a commercial graphite anode and lean (2 g A(-1)h(-1)) electrolyte, ASR-LXMO shows high capacity retention of 76% after 125 cycles in full-cell cycling.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据