4.8 Review

Host Materials Anchoring Polysulfides in Li-S Batteries Reviewed

期刊

ADVANCED ENERGY MATERIALS
卷 11, 期 15, 页码 -

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/aenm.202001304

关键词

chemical bonding; lithium-sulfur batteries; physical confinement; polysulfides; sulfur hosts

资金

  1. China Scholarship Council

向作者/读者索取更多资源

Lithium-sulfur batteries are seen as a viable alternative to future energy storage devices due to their high theoretical energy density. However, the main challenge lies in the leakage and migration of sulfur species. Recent research has focused on developing sulfur host materials that can effectively anchor polysulfides for improved battery performance.
Lithium-sulfur batteries (Li-S) have become a viable alternative to future energy storage devices. The electrochemical reaction based on lithium and sulfur promises an extraordinary theoretical energy density, which is far higher than current commercialized Li-ion batteries. However, the principal disadvantage impeding the success of Li-S batteries lies in the severe leakage and migration of soluble lithium polysulfide intermediates out of cathodes upon cycling. The loss of active sulfur species incurs significant capacity decay and poor battery lifespans. Considerable efforts have been devoted to developing various sulfur host materials that can effectively anchor lithium polysulfides. Herein, a comprehensive review is presented of recent advances in sulfur host materials. On the basis of the electrochemistry of Li-S batteries, the strategies for anchoring polysulfides are systematically categorized into physical confinement and chemical bonding. The structural merits of various sulfur host materials are highlighted, and the interaction mechanisms with sulfur species are discussed in detail, which provides valuable insights into the rational design and engineering of advanced sulfur host materials facilitating the commercialization of Li-S batteries. Future challenges and promising research prospects for sulfur host materials are proposed at the end of the review.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据