4.8 Article

Rational Construction of Self-Standing Sulfur-Doped Fe2O3Anodes with Promoted Energy Storage Capability for Wearable Aqueous Rechargeable NiCo-Fe Batteries

期刊

ADVANCED ENERGY MATERIALS
卷 10, 期 33, 页码 -

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/aenm.202001064

关键词

aqueous electrolytes; fiber electronics; NiCo-Fe batteries; self-standing electrodes; sulfur-doped Fe2O3

资金

  1. Singapore Ministry of Education Academic Research Fund Tier 2 [MOE2019-T2-2-127]
  2. Singapore Ministry of Education Academic Research Fund Tier 1 [MOE2019-T1-001-103, MOE2019-T1-001-111]
  3. Singapore National Research Foundation Competitive Research Program [NRF-CRP18-2017-02]
  4. Nanyang Technological University
  5. Natural Science Foundation of Jiangsu Province [BK20190228]
  6. Guangdong Basic and Applied Basic Research Foundation [2019A1515110859]

向作者/读者索取更多资源

Aqueous rechargeable Ni-Fe batteries featuring an ultra-flat discharge plateau, low cost, and outstanding safety characteristics show promising prospects for application in wearable energy storage. In particular, fiber-shaped Ni-Fe batteries will enable textile-based energy supply for wearable electronics. However, the development of fiber-shaped Ni-Fe batteries is currently challenged by the performance of fibrous Fe-based anode materials. In this context, this study describes the fabrication of sulfur-doped Fe(2)O(3)nanowire arrays (S-Fe2O3NWAs) grown on carbon nanotube fibers (CNTFs) as an innovative anode material (S-Fe2O3NWAs/CNTF). Encouragingly, first-principle calculations reveal that S-doping in Fe(2)O(3)can dramatically reduce the band gap from 2.34 to 1.18 eV and thus enhance electronic conductivity. The novel developed S-Fe2O3NWAs/CNTF electrode is further demonstrated to deliver a very high capacity of 0.81 mAh cm(-2)at 4 mA cm(-2). This value is almost sixfold higher than that of the pristine Fe2O3NWAs/CNTF electrode. When a cathode containing zinc-nickel-cobalt oxide (ZNCO)@Ni(OH)(2)NWAs heterostructures is used, 0.46 mAh cm(-2)capacity and 67.32 mWh cm(-3)energy density are obtained for quasi-solid-state fiber-shaped NiCo-Fe batteries, which outperform most state-of-the-art fiber-shaped aqueous rechargeable batteries. These findings offer an innovative and feasible route to design high-performance Fe-based anodes and may inspire new development for the next-generation wearable Ni-Fe batteries.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据