4.8 Article

Opportunities in Catalysis over Metal-Zeotypes Enabled by Descriptions of Active Centers Beyond Their Binding Site

期刊

ACS CATALYSIS
卷 10, 期 16, 页码 9476-9495

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acscatal.0c02102

关键词

catalysis; zeolite; metalloenzyme; kinetics; entropy; solvent

资金

  1. University of Alabama
  2. Purdue Process Safety and Assurance Center (P2SAC)
  3. Department of Energy Office of Science, Office of Basic Energy Sciences, Chemical, Biological, and Geosciences Division [DE-SC0010379]
  4. U.S. Department of Energy (DOE) [DE-SC0010379] Funding Source: U.S. Department of Energy (DOE)

向作者/读者索取更多资源

Active centers in porous solid catalysts are multifaceted in structure, comprised of primary sites that bind intermediates, secondary environments that confine intermediates and transition states, and coadsorbed intraporous molecules, clusters, and networks of reactants and solvents that interact with species along reaction coordinates. Zeotypes are a class of microporous oxides whose lattices are substituted with metal heteroatoms, which serve as primary binding sites to catalyze a variety of chemical transformations including reductions, oxidations, and condensations. Research efforts continue to develop more complete mechanistic descriptions of catalytic behavior, requiring increasingly accurate descriptions of all moieties that comprise active centers. Framework metal heteroatoms adopt various local configurations that are difficult to control synthetically and are susceptible to restructuring during reaction. These binding sites contain structural and catalytic diversity even when they are located in the nominally simplest zeotype frameworks, as is typically the case for model heterogeneous catalyst materials of purportedly well-defined structure. Secondary environments are well-documented to influence catalysis via shape selectivity and confinement effects, yet their polarity, as defined by the oxide framework and any polar binding sites it contains (e.g., heteroatoms, hydroxyl groups), also influences the structures and Gibbs free energies of intermediates and transition states, as well as coadsorbed intraporous molecules, leading to further catalytic diversity. These three aspects that describe active centers at and beyond their binding sites must be accounted for in quantitative descriptions of the kinetic and thermodynamic factors that dictate catalysis over metal-containing zeotypes. Advances in describing the structural and catalytic diversity of these materials have required harnessing state of the art computational, spectroscopic, material synthesis, and chemical characterization methods. Herein, we outline opportunities to leverage experiment and theory to interrogate these aspects of active centers with increasing fidelity, to further advance molecular descriptions of catalysis over metal-containing zeotypes and broaden their range of catalytic behavior.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据