4.8 Article

Hydrogenative Ring-Rearrangement of Biobased Furanic Aldehydes to Cyclopentanone Compounds over Pd/Pyrochlore by Introducing Oxygen Vacancies

期刊

ACS CATALYSIS
卷 10, 期 13, 页码 7355-7366

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acscatal.0c01666

关键词

hydrogenative ring-rearrangement; furanic aldehydes; Pd/pyrochlore; Lewis acidity; oxygen vacancy

资金

  1. National Natural Science Foundation of China [21878138, 21706112]
  2. Postdoctoral Science Foundation of China [2018T110660, 2017M622104]
  3. Nanchang University
  4. Arizona State University

向作者/读者索取更多资源

Upgrading furanic aldehydes (such as furfural or 5-hydroxymethyl furfural) to cyclopentanone compounds (such as cyclopentanone or 3-hydroxymethyl cyclopentanone) is of great significance for the synthesis of high-value chemicals and biomass utilization. Developing an efficient reduced metal/acidic support with Lewis acidity is the key to facilitating the carbonyl hydrogenation and hydrolysis steps in the hydrogenative ring-rearrangement reaction. Herein, three pure Lewis acidic pyrochlore supports of the form A(2)B(2)O(7) (La2Sn2O7, Y2Sn2O7, and Y-2(Sn0.7Ce0.3)(2)O7-delta) with the same crystal structures and different metals are synthesized. The Lewis acidity and the surface properties of the pyrochlore can be tuned by inserting different kinds of A and B site metals. After impregnation, Pd nanoparticles with appropriate particle sizes are uniformly loaded on the surface of pyrochlore. For the reaction of the furanic aldehydes, all of these pyrochlore-based catalysts exhibit hydrogenation and hydrolysis rates that are both faster than those of traditional support-based catalysts due to the oxygen vacancy and pure Lewis acidity of the support. Among these pyrochlore-based catalysts, Pd/Y2Sn2O7 exhibits activity and selectivity that are higher than those of Pd/La2Sn2O7. Moreover, the Y2Sn2O7-based catalyst partially substituted by Ce3+ ions at the B site is more efficient, with the highest cyclopentanone yield and 3-hydroxymethyl cyclopentanone yield of 95.0% and 92.5%, respectively. Furthermore, the catalyst can still maintain an effective activity and stability after 4 runs. This study not only presents an efficient biobased route for the production of cyclopentanone compounds but also focuses on the acid catalytic performance of pyrochlore based on its pure Lewis acidity.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据