4.8 Review

Electrocatalysis of Single-Atom Sites: Impacts of Atomic Coordination

期刊

ACS CATALYSIS
卷 10, 期 14, 页码 7584-7618

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acscatal.0c01950

关键词

single-atom catalyst; coordination moiety; atomic configuration; electrocatalytic activity; noble metal; non-noble metal

资金

  1. National Science Foundation [CHE-1900235, CBET-1848841]
  2. Sigma Xi [G201903158663319]
  3. UCSC Chancellor's Dissertation Year Fellowship

向作者/读者索取更多资源

Single metal atoms embedded within select supporting matrices have shown great potential in the development of high-efficiency, low-cost electrocatalysts because of maximal atom utilization and mass activity. As the single metal atoms are stabilized by coordination bonds with the substrate, the strong metal-support interactions can be exploited for ready manipulation of the electrocatalytic activity and selectivity toward target reactions. However, most single-atom catalysts (SACs) are prepared by pyrolysis and contain a wide range of coordination structures. Resolving the atomic configurations of the metal coordination moieties represents a critical first step in the establishment of an unambiguous correlation between the SAC structure and activity. In this Review, we summarize recent progress in the studies of single-atom electrocatalysts, with a focus on the impacts of the coordination structure of the single-atom sites on the electrocatalytic activities toward a series of reactions that are important for various electrochemical energy technologies, such as hydrogen evolution reaction, oxygen evolution reaction, oxygen reduction reaction, nitrogen reduction reaction, CO2 reduction reaction, and so on. The survey entails a wide range of SACs, from noble metals (e.g., Pt, Pd, Ru, Ir, Au, etc.) to non-noble metals (e.g., Fe, Co, Ni, Cu, etc.), supported on a variety of substrate materials (e.g., pristine and doped carbon, metal, metal oxide, metal sulfide, etc.). Finally, the Review concludes with a perspective highlighting the promises and challenges in the further development of SACs within the context of coordination chemistry.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据