4.8 Article

Universal growth of ultra-thin III-V semiconductor single crystals

期刊

NATURE COMMUNICATIONS
卷 11, 期 1, 页码 -

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/s41467-020-17693-5

关键词

-

资金

  1. National Natural Science Foundation of China [21673161, 21905210, 51728202]
  2. Sino-German Center for Research Promotion [1400]
  3. Wuhan University

向作者/读者索取更多资源

Ultra-thin III-V semiconductors, which exhibit intriguing characteristics, such as two-dimensional (2D) electron gas, enhanced electron-hole interaction strength, and strongly polarized light emission, have always been anticipated in future electronics. However, their inherent strong covalent bonding in three dimensions hinders the layer-by-layer exfoliation, and even worse, impedes the 2D anisotropic growth. The synthesis of desirable ultra-thin III-V semiconductors is hence still in its infancy. Here we report the growth of a majority of ultra-thin III-V single crystals, ranging from ultra-narrow to wide bandgap semiconductors, through enhancing the interfacial interaction between the III-V crystals and the growth substrates to proceed the 2D layer-by-layer growth mode. The resultant ultra-thin single crystals exhibit fascinating properties of phonon frequency variation, bandgap shift, and giant second harmonic generation. Our strategy can provide an inspiration for synthesizing unexpected ultra-thin non-layered systems and also drive exploration of III-V semiconductor-based electronics. Here, the authors synthesize a variety of ultra-thin III-V single crystals, ranging from ultra-narrow to wide bandgap semiconductors, through enhancing the interfacial interaction between the III-V crystals and the growth substrates.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据