4.8 Article

A dietary fatty acid counteracts neuronal mechanical sensitization

期刊

NATURE COMMUNICATIONS
卷 11, 期 1, 页码 -

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/s41467-020-16816-2

关键词

-

资金

  1. National Institutes of Health [R01GM33845]
  2. American Heart Association [16SDG26700010]
  3. Intramural program at National Center for Complementary and Integrative Health (NCCIH-IRP)
  4. Neuroscience Institute at UTHSC
  5. NCATS
  6. NCATS/DPI Trans-NIH HEAL Initiative
  7. NATIONAL CENTER FOR COMPLEMENTARY & INTEGRATIVE HEALTH [ZIAAT000028] Funding Source: NIH RePORTER

向作者/读者索取更多资源

PIEZO2 is the essential transduction channel for touch discrimination, vibration, and proprioception. Mice and humans lacking Piezo2 experience severe mechanosensory and proprioceptive deficits and fail to develop tactile allodynia. Bradykinin, a proalgesic agent released during inflammation, potentiates PIEZO2 activity. Molecules that decrease PIEZO2 function could reduce heightened touch responses during inflammation. Here, we find that the dietary fatty acid margaric acid (MA) decreases PIEZO2 function in a dose-dependent manner. Chimera analyses demonstrate that the PIEZO2 beam is a key region tuning MA-mediated channel inhibition. MA reduces neuronal action potential firing elicited by mechanical stimuli in mice and rat neurons and counteracts PIEZO2 sensitization by bradykinin. Finally, we demonstrate that this saturated fatty acid decreases PIEZO2 currents in touch neurons derived from human induced pluripotent stem cells. Our findings report on a natural product that inhibits PIEZO2 function and counteracts neuronal mechanical sensitization and reveal a key region for channel inhibition. PIEZO2 is a critical component of the mechanism by which innocuous touch causes pain (tactile allodynia). Here, authors find that the dietary fatty acid margaric acid decreases PIEZO2 function in a dose-dependent manner and counteracts neuronal mechanical sensitization by a proalgesic agent.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据