4.8 Article

Comprehensive structure-function characterization of DNMT3B and DNMT3A reveals distinctive de novo DNA methylation mechanisms

期刊

NATURE COMMUNICATIONS
卷 11, 期 1, 页码 -

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/s41467-020-17109-4

关键词

-

资金

  1. NIH [1R35GM119721, R01CA215284, R01CA211336, 1R35 ES031707]
  2. Intramural Research Program of the National Institute of Environmental Health Sciences, NIH [ES101965]
  3. Deutsche Forschungsgemeinschaft DFG [JE 252/10, JE 252/36]
  4. UNC Cancer Center Core Support Grant [P30-CA016086]
  5. NATIONAL INSTITUTE OF ENVIRONMENTAL HEALTH SCIENCES [ZIAES101965] Funding Source: NIH RePORTER

向作者/读者索取更多资源

Mammalian DNA methylation patterns are established by two de novo DNA methyltransferases, DNMT3A and DNMT3B, which exhibit both redundant and distinctive methylation activities. However, the related molecular basis remains undetermined. Through comprehensive structural, enzymology and cellular characterization of DNMT3A and DNMT3B, we here report a multi-layered substrate-recognition mechanism underpinning their divergent genomic methylation activities. A hydrogen bond in the catalytic loop of DNMT3B causes a lower CpG specificity than DNMT3A, while the interplay of target recognition domain and homodimeric interface fine-tunes the distinct target selection between the two enzymes, with Lysine 777 of DNMT3B acting as a unique sensor of the +1 flanking base. The divergent substrate preference between DNMT3A and DNMT3B provides an explanation for site-specific epigenomic alterations seen in ICF syndrome with DNMT3B mutations. Together, this study reveals distinctive substrate-readout mechanisms of the two DNMT3 enzymes, implicative of their differential roles during development and pathogenesis. In mammals, DNA methylation patterns are established by two de novo DNA methyltransferases, DNMT3A and DNMT3B. Here the authors report the crystal structures of DNMT3B in complex with both CpG and CpA DNA, providing insight into the substrate-recognition mechanism underpinning the divergent genomic methylation activities of DNMT3A and DNMT3B.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据