4.8 Article

NCLX prevents cell death during adrenergic activation of the brown adipose tissue

期刊

NATURE COMMUNICATIONS
卷 11, 期 1, 页码 -

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/s41467-020-16572-3

关键词

-

资金

  1. Kreitman predoctoral scholarship from Ben-Gurion University
  2. Israeli Council for Higher Education fellowship
  3. National Institutes of Health [RO1 DK35914, R01 DK56690, R01 DK074778]
  4. Israel Science Foundation (ISF) [1424/17]
  5. ISF-China [1210/14]
  6. German-Israeli Project Cooperation (DIP) [SE2372/1-1]
  7. DRC UCLA/UCSD Pilot grant (NIH) [P30 DK063491]
  8. Department of Medicine Chair at UCLA

向作者/读者索取更多资源

A sharp increase in mitochondrial Ca2+ marks the activation of brown adipose tissue (BAT) thermogenesis, yet the mechanisms preventing Ca2+ deleterious effects are poorly understood. Here, we show that adrenergic stimulation of BAT activates a PKA-dependent mitochondrial Ca2+ extrusion via the mitochondrial Na+/Ca2+ exchanger, NCLX. Adrenergic stimulation of NCLX-null brown adipocytes (BA) induces a profound mitochondrial Ca2+ overload and impaired uncoupled respiration. Core body temperature, PET imaging of glucose uptake and VO2 measurements confirm a thermogenic defect in NCLX-null mice. We show that Ca2+ overload induced by adrenergic stimulation of NCLX-null BAT, triggers the mitochondrial permeability transition pore (mPTP) opening, leading to a remarkable mitochondrial swelling and cell death. Treatment with mPTP inhibitors rescue mitochondrial function and thermogenesis in NCLX-null BAT, while calcium overload persists. Our findings identify a key pathway through which BA evade apoptosis during adrenergic stimulation of uncoupling. NCLX deletion transforms the adrenergic pathway responsible for thermogenesis activation into a death pathway. Brown adipose tissue activation of thermogenesis is accompanied by a sequence of events commonly associated with apoptosis, however they evade cell death. Assali et al. show that NCLX prevents mitochondrial calcium overload and apoptosis. Deletion of NCLX, converts a thermogenic signal into a death pathway.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据