4.8 Article

Parity-time symmetry in wavelength space within a single spatial resonator

期刊

NATURE COMMUNICATIONS
卷 11, 期 1, 页码 -

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/s41467-020-16705-8

关键词

-

资金

  1. National Natural Science Foundation of China [61860206002, 61905095]
  2. Tier 3 Talent Recruitment Program of Jinan

向作者/读者索取更多资源

We show a parity-time (PT) symmetric microwave photonic system in the optical wavelength space within a single spatial resonator, in which the gain and loss modes can perfectly overlay spatially but are distinguishable in the designated parameter space. To prove the concept, a PT-symmetric optoelectronic oscillator (OEO) in the optical wavelength space is implemented. The OEO has a single-loop architecture, with the microwave gain and loss modes carried by two optical wavelengths to form two mutually coupled wavelength-space resonators. The operation of PT symmetry in the OEO is verified by the generation of a 10-GHz microwave signal with a low phase noise of -129.3 dBc/Hz at 10-kHz offset frequency and small sidemodes of less than -66.22 dBc/Hz. Compared with a conventional spatial PT-symmetric system, a PT-symmetric system in the wavelength space features a much simpler configuration, better stability and greater resilience to environmental interferences. Most conventional PT-symmetric systems contain two physically separated modes. Here the authors proposed a PT-symmetric microwave optoelectronic oscillator, where the gain and loss modes are confined in a single spatial resonator, resulting in an increased structural simplicity, and long-term stability.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据