4.8 Article

Mechanisms of activation and desensitization of full-length glycine receptor in lipid nanodiscs

期刊

NATURE COMMUNICATIONS
卷 11, 期 1, 页码 -

出版社

NATURE RESEARCH
DOI: 10.1038/s41467-020-17364-5

关键词

-

资金

  1. National Institutes of Health [P41GM103832, S10OD021600, R01GM108921, R01GM131216, R35GM134896, 3R01GM108921-03S1, R01GM108921-5S1, 3R01GM131216-1S1]
  2. National Cancer Institute's National Cryo-EM Facility at the Frederick National Laboratory for Cancer Research
  3. AHA [20POST35210394, 17POST33671152]
  4. EPSRC [EP/R029407/1] Funding Source: UKRI

向作者/读者索取更多资源

Glycinergic synapses play a central role in motor control and pain processing in the central nervous system. Glycine receptors (GlyRs) are key players in mediating fast inhibitory neurotransmission at these synapses. While previous high-resolution structures have provided insights into the molecular architecture of GlyR, several mechanistic questions pertaining to channel function are still unanswered. Here, we present Cryo-EM structures of the full-length GlyR protein complex reconstituted into lipid nanodiscs that are captured in the unliganded (closed), glycine-bound (open and desensitized), and allosteric modulator-bound conformations. A comparison of these states reveals global conformational changes underlying GlyR channel gating and modulation. The functional state assignments were validated by molecular dynamics simulations, and the observed permeation events are in agreement with the anion selectivity and conductance of GlyR. These studies provide the structural basis for gating, ion selectivity, and single-channel conductance properties of GlyR in a lipid environment. Glycinergic synapses play a central role in motor control and pain processing in the central nervous system. Here, authors present cryo-EM structures of the full-length glycine receptors (GlyRs) reconstituted into lipid nanodiscs in the unliganded, glycine-bound and allosteric modulator-bound conformations and reveal global conformational changes underlying GlyR channel gating and modulation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据