4.8 Article

Electrochemical CO2 reduction to high-concentration pure formic acid solutions in an all-solid-state reactor

期刊

NATURE COMMUNICATIONS
卷 11, 期 1, 页码 -

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/s41467-020-17403-1

关键词

-

资金

  1. Rice University
  2. Welch Foundation Research Grant
  3. Smalley-Curl Institute
  4. China Scholarship Council (CSC) [201806320253]
  5. 2018 Zhejiang University Academic Award for Outstanding Doctoral Candidates

向作者/读者索取更多资源

Electrochemical CO2 reduction reaction (CO2RR) to liquid fuels is currently challenged by low product concentrations, as well as their mixture with traditional liquid electrolytes, such as KHCO3 solution. Here we report an all-solid-state electrochemical CO2RR system for continuous generation of high-purity and high-concentration formic acid vapors and solutions. The cathode and anode were separated by a porous solid electrolyte (PSE) layer, where electrochemically generated formate and proton were recombined to form molecular formic acid. The generated formic acid can be efficiently removed in the form of vapors via inert gas stream flowing through the PSE layer. Coupling with a high activity (formate partial current densities similar to 450mAcm(-2)), selectivity (maximal Faradaic efficiency similar to 97%), and stability (100hours) grain boundary-enriched bismuth catalyst, we demonstrated ultra-high concentrations of pure formic acid solutions (up to nearly 100 wt.%) condensed from generated vapors via flexible tuning of the carrier gas stream. Electrochemical CO2 reduction to liquid fuels is limited by low product concentrations and formation of mixtures with traditional liquid electrolytes. Here the authors report an all-solid-state system for a continuous generation of high-purity and high-concentration formic acid vapors and solutions.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据