4.8 Article

Focus on the spectra that matter by clustering of quantification data in shotgun proteomics

期刊

NATURE COMMUNICATIONS
卷 11, 期 1, 页码 -

出版社

NATURE RESEARCH
DOI: 10.1038/s41467-020-17037-3

关键词

-

资金

  1. Swedish Research Council [201704030]
  2. Royal Institute of Technology

向作者/读者索取更多资源

In shotgun proteomics, the analysis of label-free quantification experiments is typically limited by the identification rate and the noise level in the quantitative data. This generally causes a low sensitivity in differential expression analysis. Here, we propose a quantification-first approach for peptides that reverses the classical identification-first workflow, thereby preventing valuable information from being discarded in the identification stage. Specifically, we introduce a method, Quandenser, that applies unsupervised clustering on both MS1 and MS2 level to summarize all analytes of interest without assigning identities. This reduces search time due to the data reduction. We can now employ open modification and de novo searches to identify analytes of interest that would have gone unnoticed in traditional pipelines. Quandenser+Triqler outperforms the state-of-the-art method MaxQuant+Perseus, consistently reporting more differentially abundant proteins for all tested datasets. Software is available for all major operating systems at https://github.com/statisticalbiotechnology/quandenser, under Apache 2.0 license. Matching mass spectra to peptide sequences is the usual first step in proteomics data analysis, often followed by peptide quantification. Here, the authors show that clustering and quantifying mass spectral features prior to peptide identification can increase the sensitivity of label-free quantitative proteomics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据