4.8 Article

Optogenetics inspired transition metal dichalcogenide neuristors for in-memory deep recurrent neural networks

期刊

NATURE COMMUNICATIONS
卷 11, 期 1, 页码 -

出版社

NATURE PORTFOLIO
DOI: 10.1038/s41467-020-16985-0

关键词

-

资金

  1. MOE [RG87/16, RG 166/16, MOE2015-T2-2-007, MOE2015-T2-2-043, MOE2017-T2-2-136, MOE2016-T2-1-100]

向作者/读者索取更多资源

Shallow feed-forward networks are incapable of addressing complex tasks such as natural language processing that require learning of temporal signals. To address these requirements, we need deep neuromorphic architectures with recurrent connections such as deep recurrent neural networks. However, the training of such networks demand very high precision of weights, excellent conductance linearity and low write-noise- not satisfied by current memristive implementations. Inspired from optogenetics, here we report a neuromorphic computing platform comprised of photo-excitable neuristors capable of in-memory computations across 980 addressable states with a high signal-to-noise ratio of 77. The large linear dynamic range, low write noise and selective excitability allows high fidelity opto-electronic transfer of weights with a two-shot write scheme, while electrical in-memory inference provides energy efficiency. This method enables implementing a memristive deep recurrent neural network with twelve trainable layers with more than a million parameters to recognize spoken commands with >90% accuracy. Accomplishing complex cognitive tasks such as speech recognition calls for artificial intelligence hardware with high computing precision. John et al. propose deep recurrent neural networks based on optoelectronic transition metal dichalcogenide memristors with high weight precision for in-memory computing.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据