4.8 Article

Highly active deficient ternary sulfide photoanode for photoelectrochemical water splitting

期刊

NATURE COMMUNICATIONS
卷 11, 期 1, 页码 -

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/s41467-020-16800-w

关键词

-

资金

  1. National Natural Science Foundation of China [21701099]
  2. Taishan Scholars Climbing Program of Shandong Province [tspd20150201]

向作者/读者索取更多资源

The exploration of photoanode materials with high efficiency and stability is the eternal pursuit for the realization of practically solar-driven photoelectrochemical (PEC) water splitting. Here we develop a deficient ternary metal sulfide (CdIn2S4) photoanode, and its PEC performance is significantly enhanced by introducing surface sulfur vacancies, achieving a photocurrent density of 5.73mAcm(-2) at 1.23V vs. RHE and 1 Sun with an applied bias photon-to-current efficiency of 2.49% at 0.477V vs. RHE. The experimental characterizations and theoretical calculations highlight the enhanced effect of surface sulfur vacancies on the interfacial charge separation and transfer kinetics, which also demonstrate the restrained surface states distribution and the transformation of active sites after introducing surface sulfur vacancies. This work may inspire more excellent work on developing sulfide-based photoanodes. While water splitting could provide a means to utilize solar energy, identifying sufficiently stable and active semiconductors is challenging. Here, authors report a deficient CdIn2S4 photoanode with improved water splitting performances due to efficient charge separation/transfer kinetics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据