4.8 Article

Autophagy-mediated apoptosis eliminates aneuploid cells in a mouse model of chromosome mosaicism

期刊

NATURE COMMUNICATIONS
卷 11, 期 1, 页码 -

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/s41467-020-16796-3

关键词

-

资金

  1. Wellcome Trust [098287/Z/12/Z]
  2. ERC [669198]
  3. Rosetrees Trust [M877]
  4. Open Philanthropy grants
  5. Wellcome Trust [098287/Z/12/Z] Funding Source: Wellcome Trust
  6. European Research Council (ERC) [669198] Funding Source: European Research Council (ERC)
  7. Rosetrees Trust [M877] Funding Source: researchfish

向作者/读者索取更多资源

The high incidence of aneuploidy in the embryo is considered the principal cause for low human fecundity. However, the prevalence of aneuploidy dramatically declines as pregnancy progresses, with the steepest drop occurring as the embryo completes implantation. Despite the fact that the plasticity of the embryo in dealing with aneuploidy is fundamental to normal development, the mechanisms responsible for eliminating aneuploid cells are unclear. Here, using a mouse model of chromosome mosaicism, we show that aneuploid cells are preferentially eliminated from the embryonic lineage in a p53-dependent process involving both autophagy and apoptosis before, during and after implantation. Moreover, we show that diploid cells in mosaic embryos undertake compensatory proliferation during the implantation stages to confer embryonic viability. Together, our results indicate a close link between aneuploidy, autophagy, and apoptosis to refine the embryonic cell population and ensure only chromosomally fit cells proceed through development of the fetus. The mechanisms behind the plasticity of embryos and how they deal with aneuploid cells are unclear. Here, the authors show that aneuploid cells in a mouse embryo are preferentially eliminated during pre- and peri-implantation development in a p53-dependent process involving both autophagy and apoptosis.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据