4.8 Article

Synergistic gene editing in human iPS cells via cell cycle and DNA repair modulation

期刊

NATURE COMMUNICATIONS
卷 11, 期 1, 页码 -

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/s41467-020-16643-5

关键词

-

资金

  1. Hubert Tuor Foundation
  2. Otsuka Toshimi Scholarship Foundation
  3. Japanese Government (MEXT)
  4. Japan Agency for Medical Research and Development (AMED) grant [JP19bm0804001, JP20bm0104001]

向作者/读者索取更多资源

Precise gene editing aims at generating single-nucleotide modifications to correct or model human disease. However, precision editing with nucleases such as CRIPSR-Cas9 has seen limited success due to poor efficiency and limited practicality. Here, we establish a fluorescent DNA repair assay in human induced pluripotent stem (iPS) cells to visualize and quantify the frequency of DNA repair outcomes during monoallelic and biallelic targeting. We found that modulating both DNA repair and cell cycle phase via defined culture conditions and small molecules synergistically enhanced the frequency of homology-directed repair (HDR). Notably, targeting in homozygous reporter cells results in high levels of editing with a vast majority of biallelic HDR outcomes. We then leverage efficient biallelic HDR with mixed ssODN repair templates to generate heterozygous mutations. Synergistic gene editing represents an effective strategy to generate precise genetic modifications in human iPS cells. Precision editing with CRISPR-Cas9 often suffers from poor efficiency. Here the authors identify culture conditions and small molecules that synergize to promote homology-directed repair (HDR) in induced pluripotent stem (iPS) cells.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据