4.8 Article

Searching large-scale scRNA-seq databases via unbiased cell embedding with Cell BLAST

期刊

NATURE COMMUNICATIONS
卷 11, 期 1, 页码 -

出版社

NATURE PORTFOLIO
DOI: 10.1038/s41467-020-17281-7

关键词

-

资金

  1. National Key Research and Development Program [2016YFC0901603]
  2. China 863 Program [2015AA020108]
  3. State Key Laboratory of Protein and Plant Gene Research at Peking University
  4. Beijing Advanced Innovation Center for Genomics (ICG) at Peking University
  5. National Program for Support of Top-notch Young Professionals
  6. High-performance Computing Platform of Peking University

向作者/读者索取更多资源

Single-cell RNA-seq (scRNA-seq) is being used widely to resolve cellular heterogeneity. With the rapid accumulation of public scRNA-seq data, an effective and efficient cell-querying method is critical for the utilization of the existing annotations to curate newly sequenced cells. Such a querying method should be based on an accurate cell-to-cell similarity measure, and capable of handling batch effects properly. Herein, we present Cell BLAST, an accurate and robust cell-querying method built on a neural network-based generative model and a customized cell-to-cell similarity metric. Through extensive benchmarks and case studies, we demonstrate the effectiveness of Cell BLAST in annotating discrete cell types and continuous cell differentiation potential, as well as identifying novel cell types. Powered by a well-curated reference database and a user-friendly Web server, Cell BLAST provides the one-stop solution for real-world scRNA-seq cell querying and annotation. Single-cell RNA-seq (scRNA-seq) is being widely used to resolve cellular heterogeneity. Here, the authors present a cell-querying method built on a neural network-based generative model and a customized cell-to-cell similarity metric.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据