4.8 Article

Forelimb movements evoked by optogenetic stimulation of the macaque motor cortex

期刊

NATURE COMMUNICATIONS
卷 11, 期 1, 页码 -

出版社

NATURE PORTFOLIO
DOI: 10.1038/s41467-020-16883-5

关键词

-

资金

  1. MEXT KAKENHI [15H05873, 15H05879, 17H05590]
  2. JSPS KAKENHI [15K01854, 16K01968, 16K07014, 26290001, 26250009, 19KK0193]
  3. JST CREST [JPMJCR1853]
  4. AMED [JP19dm0307005, JP19dm0207050]
  5. Takeda Science Foundation
  6. Grants-in-Aid for Scientific Research [26290001, 19KK0193, 15K01854, 16K07014, 16K01968, 17H05590] Funding Source: KAKEN

向作者/读者索取更多资源

Optogenetics has become an indispensable tool for investigating brain functions. Although non-human primates are particularly useful models for understanding the functions and dysfunctions of the human brain, application of optogenetics to non-human primates is still limited. In the present study, we generate an effective adeno-associated viral vector serotype DJ to express channelrhodopsin-2 (ChR2) under the control of a strong ubiquitous CAG promoter and inject into the somatotopically identified forelimb region of the primary motor cortex in macaque monkeys. ChR2 is strongly expressed around the injection sites, and optogenetic intracortical microstimulation (oICMS) through a homemade optrode induces prominent cortical activity: Even single-pulse, short-duration oICMS evokes long-lasting repetitive firings of cortical neurons. In addition, oICMS elicits distinct forelimb movements and muscle activity, which are comparable to those elicited by conventional electrical ICMS. The present study removes obstacles to optogenetic manipulation of neuronal activity and behaviors in non-human primates. Non-human primates are useful models for understanding the human brain but application of optogenetics to non-human primates is challenging. The authors used optogenetic intracortical microstimulation in the primary motor cortex of macaques to elicit distinct forelimb movements and muscle activity.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据