4.8 Article

Light-triggered switching of liposome surface charge directs delivery of membrane impermeable payloads in vivo

期刊

NATURE COMMUNICATIONS
卷 11, 期 1, 页码 -

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/s41467-020-17360-9

关键词

-

资金

  1. Netherlands Organization for Scientific Research (NWO-VICI-project) [724.014.001, 680.47.616]
  2. M-ERA grant
  3. Leiden/Huygens prize scholarship
  4. Chinese Scholarship Council grant
  5. Biomolecular Nanoscale Engineering Center (BioNEC), a Centre of Excellence - Villum Foundation [VKR022710]

向作者/读者索取更多资源

Surface charge plays a fundamental role in determining the fate of a nanoparticle, and any encapsulated contents, in vivo. Herein, we describe, and visualise in real time, light-triggered switching of liposome surface charge, from neutral to cationic, in situ and in vivo (embryonic zebrafish). Prior to light activation, intravenously administered liposomes, composed of just two lipid reagents, freely circulate and successfully evade innate immune cells present in the fish. Upon in situ irradiation and surface charge switching, however, liposomes rapidly adsorb to, and are taken up by, endothelial cells and/or are phagocytosed by blood resident macrophages. Coupling complete external control of nanoparticle targeting together with the intracellular delivery of encapsulated (and membrane impermeable) cargos, these compositionally simple liposomes are proof that advanced nanoparticle function in vivo does not require increased design complexity but rather a thorough understanding of the fundamental nano-bio interactions involved. Surface charge plays an important role in determining nanoparticle fate in vivo. Here the authors report on the development of a light triggered charge switching liposome and demonstrate light triggered liposome targeting, uptake and payload delivery in a zebrafish model.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据