4.8 Article

Structural distortion and electron redistribution in dual-emitting gold nanoclusters

期刊

NATURE COMMUNICATIONS
卷 11, 期 1, 页码 -

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/s41467-020-16686-8

关键词

-

资金

  1. National Science Foundation [DMR-1808675, DMR- 2002936/2002891]
  2. U.S. DOE Office of Science Facility at Brookhaven National Laboratory [DE-SC0012704]

向作者/读者索取更多资源

Deciphering the complicated excited-state process is critical for the development of luminescent materials with controllable emissions in different applications. Here we report the emergence of a photo-induced structural distortion accompanied by an electron redistribution in a series of gold nanoclusters. Such unexpected slow process of excited-state transformation results in near-infrared dual emission with extended photoluminescent lifetime. We demonstrate that this dual emission exhibits highly sensitive and ratiometric response to solvent polarity, viscosity, temperature and pressure. Thus, a versatile luminescent nano-sensor for multiple environmental parameters is developed based on this strategy. Furthermore, we fully unravel the atomic-scale structural origin of this unexpected excited-state transformation, and demonstrate control over the transition dynamics by tailoring the bi-tetrahedral core structures of gold nanoclusters. Overall, this work provides a substantial advance in the excited-state physical chemistry of luminescent nanoclusters and a general strategy for the rational design of next-generation nano-probes, sensors and switches. Excited-state structural and electronic changes, observed in molecules, are hampered in nanomaterials. Here the authors identify structural distortion and electron redistribution in three photoexcited gold nanoclusters, connecting molecular and nanocrystal regimes, enabled by flexibility of the tetrahedral core units.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据