4.8 Article

Two years of post-wildfire impacts on dissolved organic matter, nitrogen, and precursors of disinfection by-products in California stream waters

期刊

WATER RESEARCH
卷 181, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.watres.2020.115891

关键词

Wildfires; Drinking water quality; Nitrogen cycle; DOM properties; DBP FPs

资金

  1. United States Environmental Protection Agency [R835864]
  2. United States Department of Agriculture - National Institute of Food and Agriculture [2018-67019-27795]

向作者/读者索取更多资源

We investigated the effects of two California wildfires (Rocky and Wragg Fires, 2015) compared to an unburned reference watershed on water quality, dissolved organic matter (DOM), and precursors of disinfection by-products (DBPs) for two years' post-fire. The two burned watersheds both experienced wildfires but differed in the proportion of burned watershed areas. Burned watersheds showed rapid water quality degradation from elevated levels of turbidity, color, and suspended solids, with greater degradation in the more extensively burned watershed. During the first year's initial flushes, concentrations of dissolved organic carbon (DOC), dissolved organic nitrogen (DON), ammonium (NH4+/NH3), and specific ultraviolet absorbance (SUVA(254)) were significantly higher (67 +/- 40%, 418 +/- 125%, 192 +/- 120%, and 31 +/- 17%, respectively) in the more extensively burned watershed compared to the reference watershed. These elevated values gradually declined and finally returned to levels like the reference watershed in the second year. Nitrate concentrations were near detection limits (0.01 mg-N/L) in the first year but showed a large increase in fire-impacted streams during the second rainy season, possibly due to delayed nitrification. Changes in DOM composition, especially during the initial storm events, indicated that fires can attenuate humic-like and soluble microbial by-product-like (SMP) DOM while increasing the proportion of fulvic-like, tryptophan-like, and tyrosine-like compounds. Elevated bromide (Br-) concentrations (up to 8.7 mu M]) caused a shift in speciation of trihalomethanes (THMs) and haloacetic acids (HAAs) to brominated species for extended periods (up to 2 years). Wildfire also resulted in elevated concentrations of N-nitrosodimethylamine (NDMA) precursors. Such changes in THM, HAA, and NDMA precursors following wildfires pose a potential treatability challenge for drinking water treatment, but the effects are relatively short-term (<= 1 year). (C) 2020 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据