4.8 Article

Dissolved organic matter dominating the photodegradation of free DNA bases in aquatic environments

期刊

WATER RESEARCH
卷 179, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.watres.2020.115885

关键词

Dissolved organic matter (DOM); Free DNA bases; Photodegradation; Hydroxyl radical; Singlet oxygen

资金

  1. National Natural Science Foundation of China [51738012, 51825804, 51821006]

向作者/读者索取更多资源

Free DNA bases are widely present in the environments, and can be utilized by bacteria for their nucleic acids synthesis or as nutrition sources. In sunlit natural waters, these free bases probably undergo photodegradation which would change the bioavailable bases contents. Though the photodegradation of DNA has been investigated, the photodegradation behaviors of free bases may be quite different from those of DNA-confined bases in consideration of their different chemical environments. Herein, the photodegradation of four free bases (guanine, adenine, thymine and cytosine) was investigated. Results show that direct photodegradation of free bases in phosphate buffer caused by UV was slow. However, the photodegradation of these free bases were greatly enhanced in dissolved organic matter (DOM) solution. In the presence of 10-50 mg/L DOM, the photodegradation rates of free bases were increased by 1.85-14.6 times compared to the controls without DOM. DOM could result in indirect photodegradation by producing hydroxyl radical (center dot OH) and singlet oxygen (O-1(2)) under irradiation, and this indirect photodegradation enhanced and dominated the free bases photodegradation. The center dot OH was involved in all four bases photodegradation, while the O-1(2) only participated in guanine photodegradation. In phosphate buffer, the fastest photodegradation bases were pyrimidine, however, guanine became the fastest photodegradation base in DOM solution due to the selective oxidation of guanine by O-1(2). In summary, DOM may be a determinant for free bases photodegradation in natural waters and thereby deeply influence free bases fates in aquatic environments. (c) 2020 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据