4.3 Article

Local features and global shape information in object classification by deep convolutional neural networks

期刊

VISION RESEARCH
卷 172, 期 -, 页码 46-61

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.visres.2020.04.003

关键词

Shape; Global and local features; Object recognition; Deep learning

资金

  1. National Science Foundation [BSC-1655300]
  2. NIH/NCI Award [1R01CA236791-01]

向作者/读者索取更多资源

Deep convolutional neural networks (DCNNs) show impressive similarities to the human visual system. Recent research, however, suggests that DCNNs have limitations in recognizing objects by their shape. We tested the hypothesis that DCNNs are sensitive to an object's local contour features but have no access to global shape information that predominates human object recognition. We employed transfer learning to assess local and global shape processing in trained networks. In Experiment 1, we used restricted and unrestricted transfer learning to retrain AlexNet, VGG-19, and ResNet-50 to classify circles and squares. We then probed these networks with stimuli with conflicting global shape and local contour information. We presented networks with overall square shapes comprised of curved elements and circles comprised of corner elements. Networks classified the test stimuli by local contour features rather than global shapes. In Experiment 2, we changed the training data to include circles and squares comprised of different elements so that the local contour features of the object were uninformative. This considerably increased the network's tendency to produce global shape responses, but deeper analyses in Experiment 3 revealed the network still showed no sensitivity to the spatial configuration of local elements. These findings demonstrate that DCNNs' performance is an inversion of human performance with respect to global and local shape processing. Whereas abstract relations of elements predominate in human perception of shape, DCNNs appear to extract only local contour fragments, with no representation of how they spatially relate to each other to form global shapes.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据