4.7 Review

Methylglyoxal-induced dicarbonyl stress in aging and disease: first steps towards glyoxalase 1-based treatments

期刊

CLINICAL SCIENCE
卷 130, 期 19, 页码 1677-1696

出版社

PORTLAND PRESS LTD
DOI: 10.1042/CS20160025

关键词

cardiovascular disease; diabetes; glycation; glyoxalase; methylglyoxal; multidrug resistance

资金

  1. Biotechnology Research Council (BBSRC) U.K.
  2. British Heart Foundation
  3. European Union's Seventh Framework Programme FP7 [244995]
  4. Innovate U.K.
  5. Unilever Research (Colworth, U.K.)

向作者/读者索取更多资源

Dicarbonyl stress is the abnormal accumulation of dicarbonyl metabolites leading to increased protein and DNA modification contributing to cell and tissue dysfunction in aging and disease. It is produced by increased formation and/or decreased metabolism of dicarbonyl metabolites. MG (methylglyoxal) is a dicarbonyl metabolite of relatively high flux of formation and precursor of the most quantitatively and functionally important spontaneous modifications of protein and DNA clinically. Major MG-derived adducts are arginine-derived hydroimidazolones of protein and deoxyguanosine-derived imidazopurinones of DNA. These are formed non-oxidatively. The glyoxalase system provides an efficient and essential basal and stress-response-inducible enzymatic defence against dicarbonyl stress by the reduced glutathione-dependent metabolism of methylglyoxal by glyoxalase 1. The GLO1 gene encoding glyoxalase 1 has low prevalence duplication and high prevalence amplification in some tumours. Dicarbonyl stress contributes to aging, disease and activity of cytotoxic chemotherapeutic agents. It is found at a low, moderate and severe level in obesity, diabetes and renal failure respectively, where it contributes to the development of metabolic and vascular complications. Increased glyoxalase 1 expression confers multidrug resistance to cancer chemotherapy and has relatively high prevalence in liver, lung and breast cancers. Studies of dicarbonyl stress are providing improved understanding of aging and disease and the basis for rational design of novel pharmaceuticals: glyoxalase 1 inducers for obesity, diabetes and cardiovascular disease and glyoxalase 1 inhibitors for multidrug-resistant tumours. The first clinical trial of a glyoxalase 1 inducer in overweight and obese subjects showed improved glycaemic control, insulin resistance and vascular function.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据