4.5 Article

Kinetic parameter estimation and simulation of pultrusion process of an epoxy-glass fiber system

期刊

THERMOCHIMICA ACTA
卷 690, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.tca.2020.178636

关键词

Cure behaviour; DSC; Pultrusion; Thermal analysis; Thermosetting resins

资金

  1. (CAPES) Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior - Brazil

向作者/读者索取更多资源

Pultrusion is a continuous process for manufacturing polymer composite with uniform cross-sectional profiles. In this process the pulling speed and die temperature are the main process variables that can be used to improve the chemical and mechanical properties of the pultruded polymer composite. A critical processing step in reactive polymer composites that involves thermoset resins is the curing reaction that starts from monomers/oligomers, which forms a three-dimensional cross-linked network. While empirical kinetic models for the prediction of the degree of cure are easy to handle, they are limited in terms of providing a complete understanding of the system, due to the absence of knowledge regarding the full kinetic of the functional groups. In this regard, the use of phenomenological models, based on material balances of functional groups involved in the curing reaction, is a noteworthy strategy. In this work two kinetic models were tested to simulate the pultrusion process: (i) empirical model and (ii) phenomenological model. Diffusional limitations on the cure kinetics were coupled into both models. The kinetic parameters of both models were estimated from differential scanning calorimetry (DSC) experiments of an epoxy resin derived from an unmodified liquid diglycidyl ether of Bisphenol A (DGEBA resin) in a mixture with an Anhydride Curing Agent and an Accelerator like DMP-30 (2,4,6-tris(dimethylaminomethyl) phenol). The results revealed that the kinetic models could be reasonably adjusted to the experimental curing behavior, allowing to obtain accurate values for different curing rates. The kinetic models were then implemented into the pultrusion model, by the use of the FE software, ANSYS-17.2. According to the results of ultruded thermal and curing profiles of pultruded parts, it is shown that the kinetic models are suitable for predicting the thermal and curing behavior of the pultrusion process.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据