4.8 Article

A New Mechanism of Light-Induced Bubble Growth to Propel Microbubble Piston Engine

期刊

SMALL
卷 16, 期 29, 页码 -

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/smll.202001548

关键词

bubble dynamics; bubble piston engines; heat transfer; indirect radiation pressure; optofluidics

资金

  1. National Nature Science Foundation of China [51821004, 51806065]
  2. Fundamental Research Funds for the Central Universities [2020DF002]

向作者/读者索取更多资源

Radiation pressure refers to the momentum transfer of photons during light particles impacting a surface. The force is too small to drive microengines. Different from the classical radiation pressure, the indirect radiation pressure (F-m) is introduced, coming from the momentum change of light-induced bubble expansion.F(m)is shown to obeyF(m)similar to (I center dot r(b))(2), behaving faster growth of indirect radiation pressure versus light intensityIand bubble radiusr(b). An effective bubble size range is identified forF(m)to suppress other forces for bubble in liquid. The top laser irradiation on nanofluid is used in this experiment. A well-defined bubble pulsating flow, being a new principle of bubble piston engine, is demonstrated. During pulse on (approximate to ns scale),F(m)exceeding other forces generates an extremely large acceleration, which is three to four orders larger than the gravity acceleration, propelling the bubble traveling downward. During pulse off, the bubble is floating upward due to the nonexistence ofF(m). In such a way, the piston engine sustains the oscillating ranges of 38-347 mu m for bubble diameters and 2.7-457.9 mu m for traveling distances of piston. This work is useful to manipulate bubble dynamics in solar energy systems, and can find various applications in optofluidics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据