4.7 Article

Marine hydrocarbon-degrading bacteria breakdown poly(ethylene terephthalate) (PET)

期刊

SCIENCE OF THE TOTAL ENVIRONMENT
卷 749, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.scitotenv.2020.141608

关键词

Marine plastic pollution; Poly(ethylene terephthalate) biodegradation; Marine hydrocarbonoclastic bacteria

向作者/读者索取更多资源

Pollution of aquatic ecosystems by plastic wastes poses severe environmental and health problems and has prompted scientific investigations on the fate and factors contributing to the modification of plastics in the marine environment. Here, we investigated, by means of microcosm studies, the role of hydrocarbon-degrading bacteria in the degradation of poly(ethylene terephthalate) (PET), the main constituents of plastic bottles, in the marine environment. To this aim, different bacterial consortia, previously acclimated to representative hydrocarbons fractions namely, tetradecane (aliphatic fraction), diesel (mixture of hydrocarbons), and naphthalene/phenantrene (aromatic fraction), were used as inocula of microcosm experiments, in order to identify peculiar specialization in poly(ethylene terephthalate) degradation. Upon formation of a mature biofilm on the surface of poly(ethylene terephthalate) films, the bacterial biodiversity and degradation efficiency of each selected consortium was analyzed. Notably, significant differences on biofilm biodiversity were observed with distinctive hydrocarbons-degraders being enriched on poly( ethylene terephthalate) surface, such as Alcanivorax, Hyphomonas, and Cycloclasticus species. Interestingly, ATR-FTIR analyses, supported by SEM and water contact angle measurements, revealed major alterations of the surface chemistry and morphology of PET films, mainly driven by the bacterial consortia enriched on tetradecane and diesel. Distinctive signatures of microbial activity were the alteration of the [FIR spectra as a consequence of PET chain scission through the hydrolysis of the ester bond, the increased sample hydrophobicity as well as the formation of small cracks and cavities on the surface of the film. In conclusion, our study demonstrates for the first time that hydrocarbons-degrading marine bacteria have the potential to degrade poly(ethylene terephthalate), although their degradative activity could potentially trigger the formation of harmful microplastics in the marine environment. (C) 2020 Published by Elsevier B.V.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据