4.7 Article

Association between climate variables and global transmission oF SARS-CoV-2

期刊

SCIENCE OF THE TOTAL ENVIRONMENT
卷 729, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.scitotenv.2020.138997

关键词

COVID-19; Climate variables; Temperature; Precipitation

向作者/读者索取更多资源

In this study, we aimed at analyzing the associations between transmission of and deaths caused by SARS-CoV-2 and meteorological variables, such as average temperature, minimum temperature, maximum temperature, and precipitation. Two outcome measures were considered, with the first aiming to study SARS-CoV-2 infections and the second aiming to study COVID-19 mortality. Daily data as well as data on SARS-CoV-2 infections and COVID-19 mortality obtained between December 1, 2019 and March 28, 2020 were collected from weather stations around the world. The country's population density and time of exposure to the disease were used as control variables. Finally, a month dummy variable was added. Daily data by country were analyzed using the panel data model. An increase in the average daily temperature by one degree Fahrenheit reduced the number of cases by approximately 6.4 cases/day. There was a negative correlation between the average temperature per country and the number of cases of SARS-CoV-2 infections. This association remained strong even with the incorporation of additional variables and controls (maximum temperature, average temperature, minimum temperature, and precipitation) and fixed country effects. There was a positive correlation between precipitation and SARS-CoV-2 transmission. Countries with higher rainfall measurements showed an increase in disease transmission. For each average inch/day, there was an increase of 56.01 cases/day. COVID-19 mortality showed no significant association with temperature. (c) 2020 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据