4.7 Article

Ground ice at depths in the Tianshuihai Lake basin on the western Qinghai -Tibet Plateau: An indication of permafrost evolution

期刊

SCIENCE OF THE TOTAL ENVIRONMENT
卷 729, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.scitotenv.2020.138966

关键词

Ground ice; Permafrost evolution; Stable isotopes; Permafrost table; Qinghai-Tibet Plateau

资金

  1. Key Research Program of Frontier Sciences, CAS [ZDBS-LY-DQC026]
  2. National Natural Science Foundation of China [41871062]
  3. Postdoctoral Science Foundation of China [2016M590984, 20180008]

向作者/读者索取更多资源

The stable-isotope data of ground ice from a deep borehole (similar to 46 m) at the Tianshuihai (TSH) lake basin on the northwestern Qinghai-Tibet Plateau (QTP) are presented together with cryolithological information. Remarkable variations in the stable isotope composition of ground ice at depths allow a division of five clearly delineated stages. The remarkable deviations in stable isotopes of ground ice during each stage underline different initial source water and formation processes, indicating considerable fluctuations in paleo-lake conditions and multiple patterns of climatic-induced permafrost evolutions. In combination with the ground ice isotopes for two deep boreholes on the interior QTP, the position of the present permafrost table is found at 2-3 m. Two possible positions of paleo-permafrost tables at depths of 7-8 and 15-16 m are identified based on the ice isotopic composition of wellbores in combination with those from the other two deep boreholes on the interior QTP. The high uniformity in stable isotopic composition of ground ice below the depth of 16 m may have reflected the consistent regional climate transitions and the resultant permafrost evolution on the QTP. This study provides some new insights on the ground ice as an indicator for permafrost evolution on the QTP.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据