4.7 Article

Potential water recovery during lithium mining from high salinity brines

期刊

SCIENCE OF THE TOTAL ENVIRONMENT
卷 720, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.scitotenv.2020.137523

关键词

Lithium; Pitzer model; Least work of separation; Raw materials; Desalination; Brine

资金

  1. CONICET
  2. ANPCyT [9/2013]

向作者/读者索取更多资源

Lithium extraction from continental brines involves the evaporation of large amounts of water in open air ponds, in order to concentrate the brine. The evaporitic technology implies the evaporation of large water volumes, raising environmental concerns. If we envision the use of desalination processes for the concentration of lithium-rich brines, then fresh water production/recovery becomes a process well integrated with lithium extraction. Here we apply the Pitzer thermodynamic model with effective molality to estimate activity coefficients for 8 different native brines, and for the resulting concentrated solutions produced by a hypothetical advanced desalinization technique. In all cases, rational activity coefficients deviate considerably from unity. We calculate next the least work of separation for a hypothetical desalination process for the 8 different brines. Because of the large total salinity, the calculation shows that the least work of separation ranges from 18 until 42 kJ kg(-1) at nil recovery ratio, and escalating from those numbers as more water is recovered. We can also predict the boiling point elevation, the vapour pressure lowering, and the osmotic pressure. Our calculations show that results are not strictly proportional to the total dissolved solids. Results are strongly dependent with the specific chemical composition of each brine, with the amount of divalent ions (Mg-Ca-SO42-) in particular strongly influencing calculations. Fresh water and lithium minerals production could be part of a single integrated production system. (C) 2020 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据