4.7 Article

Source-oriented characterization of single particles from in-port ship emissions in Guangzhou, China

期刊

SCIENCE OF THE TOTAL ENVIRONMENT
卷 724, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.scitotenv.2020.138179

关键词

Ship emissions; Single particles; Vanadium; Sulfate; Source apportionment;

资金

  1. National Natural Science Foundation of China [21607056, 41805093, 41827804]
  2. Guangzhou Development District International Science and Technology Cooperation Project [2018GH08]
  3. Natural Science Foundation of Guangdong Province [2017A030310180]
  4. Guangdong Province Public Interest Research and Capacity Building Special Fund [2014B020216005]
  5. State Key Laboratory of Organic Geochemistry, GIGCAS [SKLOG-201716]
  6. Pearl River Nova Program of Guangzhou [201710010006, 201806010064]

向作者/读者索取更多资源

In this work, we analyzed freshly emitted particles from ship exhaust in the Guangzhou port region before and after the implementation of a clean fuel policy. We used a single particle aerosol mass spectrometer (SPAMS) to measure the changes in the chemical compositions of single particles and evaluate the role of V as a tracer for ship emissions. Particles from high sulfur fuel (S-F) oil (HS) combustion ships consisted of 54.8% elemental carbon-vanadium-sulfate (EC-V-S) and 25.0% vanadium-sulfate (V-S) particles, while particles from low S-F oil (LS) combustion ships were composed of 38.7% organic carbon-sulfate (OC-S) and 28.6% elemental and organic carbon (ECOC) particles. The sulfate-containing particles exhibited a moderate decrease from 95% in HS emissions to 78% in LS emissions, which still suggests the dominant role of sulfate in LS emissions after the implementation of a clean fuel policy. The V-containing particles showed a sharp decrease from 67% in HS emissions to 14% in LS emissions along with the decrease in the relative peak area (RPA) of V, suggesting a remarkable reduction in V in ship exhaust. The count of V-containing particles in urban Guangzhou in June 2017 was generally ten times lower than that in June 2016, which was in accordance with the sharp decrease in V-containing particles in LS emissions rather than in HS emissions. Despite the decrease in V in source-oriented ship emitted particles, the ubiquitous distribution of V in particles from lower S-F combustion ships suggests V is still effective as a tracer of ship emissions in port regions after the implementation of the clean fuel policy. Furthermore, the particles from LS emissions were investigated in comparison to those from gasoline vehicles (GV), diesel vehicles (DV) and coal combustion (CC) sources to better resolve ship-related particles in port regions.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据