4.7 Article

Bacterial diversity and functional profile of microbial populations on surfaces in public hospital environments in South Africa: A high throughput metagenomic analysis

期刊

SCIENCE OF THE TOTAL ENVIRONMENT
卷 719, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.scitotenv.2020.137360

关键词

Metagenomic analysis; Environmental reservoirs; Bacterial diversity; Functional profiles; Human diseases; Hospital setting

资金

  1. Young Researchers Grant Competition of the College of Health Sciences, University of KwaZulu-Natal

向作者/读者索取更多资源

With the introduction of the One Health approach to global health advocated by the World Health Organization, the role of the environment as a reservoir and transmission route for diverse microorganisms is increasingly being recognised globally. This study investigated the diversity and functional profiles of bacterial communities using high-throughput metagenomics of the 16S rRNA gene in samples collected from environmental surfaces in different levels of healthcare in South Africa. A total of 150 samples were collected in three public hospitals [District (A), Regional (C) and Central (B)] from intensive care and paediatric wards. Military hospitals were excluded. Swabs were taken from mattresses, drip stands, ward telephones, patient files and sinks. A total of 7,996,346 reads were found, of which 7,319,569 were quality-filtered reads. Unique (and shared) microbial community structures were identified within the different hospital levels, locations and sample source. A total of 11 phyla, 29 classes, 50 orders, 105 families, 190 genera and 288 known species were identified. The primary phyla identified were Proteobacteria, Firmicutes and Actinobacteria. The dominant dass identified was Gammaproteobacteria, followed by Bacilli and Actinobacteria. Acinetobacter (16.08%), Citrobacter (13.64%), Staphylococcus (9.65%) and Cotynebacterium (6.15%) were predominant genera. Although the functional profile analysis identified citrate cyde (TCA), signal transduction mechanisms, bisphenol degradation, tyrosine metabolism and transcription-factors as the dominant pathways, human disease functional classes, including involvement in antibiotic resistance, were significantly identified. The drip stands, patient files and ward telephones in all the wards of Hospitals A and C contained a higher number of human diseases functional classes. These findings highlight the potential of different hospital environments to serve as reservoirs and possible sources of bacterial pathogens; thus, the need for better monitoring and hygienic practices within the hospital environment. (C) 2020 Published by Elsevier B.V.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据