4.7 Article

A primary school driven initiative to influence commuting style for dropping-off and picking-up of pupils

期刊

SCIENCE OF THE TOTAL ENVIRONMENT
卷 727, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.scitotenv.2020.138360

关键词

Citizen science; Smart citizen kits; Community engagement; Air pollution exposure; iSCAPE project

资金

  1. European Community's H2020 Programme (H2020-SC5-04-2015) [689954]
  2. EPSRC [EP/T003189/1] Funding Source: UKRI

向作者/读者索取更多资源

The use of cars for drop-off and pick-up of pupils from schools is a potential cause of pollution hotspots at school premises. Employing a joint execution of smart sensing technology and citizen science approach, a primary school took an initiative to co-design a study with local community and researchers to generate data and provide information to understand the impact on pollution levels and identify possible mitigation measures. This study was aimed to assess the hotspots of vehicle-generated particulate matter <= 2.5 mu m (PM2.5) and <= 10 mu m (PM10) at defined drop-off/pick-up points and its ingress into a nearby naturally ventilated primary school classroom. Five different locations were selected inside school premises for measurements during two peak hours: morning (MP; 0730-0930 h; local time), evening (EP; 1400-1600 h), and off-peak (OP; 1100-1300 h) hours for comparison. These represent PM measurements at the main road, pick-up point at the adjoining road, drop-off point, a classroom, and the school playground. Additional measurements of carbon dioxide (CO2) were taken simultaneously inside and outside (drop-off point) the classroom to understand its build-up and ingress of outdoor PM. The results demonstrated nearly a three-fold increase in the concentrations of fine particles (PM2.5) during drop-off hours compared to off-peak hours indicated the dominant contribution of car queuing in the school premises. Coarse particles (PM2.5-10) were prevalent in the school playground, while the contribution of fine particles as a result of traffic congestion became more pronounced during drop-off hours. In the naturally ventilated classroom, the changes in indoor PM2.5 concentrations during both peak hours (0.58 < R-2 < 0.67) were followed by the outdoor concentration at the drop-off point. This initiative resulted in valuable information that might be used to influence school commuting style and raise other important issues such as the generally fairly high PM2.5 concentrations in the playground and future classroom ventilation plans. (C) 2020 The Authors. Published by Elsevier B.V.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据