4.7 Review

Zinc isotope composition as a tool for tracing sources and fate of metal contaminants in rivers

期刊

SCIENCE OF THE TOTAL ENVIRONMENT
卷 728, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.scitotenv.2020.138599

关键词

Zn isotopes; Anthropogenic source; Tracer; Catchment; MC-ICP-MS

资金

  1. BRGM, AQUAREF (BRGM)
  2. BRGM, AQUAREF (IFREMER)
  3. BRGM, AQUAREF (INERIS)
  4. BRGM, AQUAREF (IRSTEA)
  5. BRGM, AQUAREF (LNE)
  6. Agence de l'eau Loire-Bretagne

向作者/读者索取更多资源

Zinc is a ubiquitous metal, acting both as an essential and a toxic element to organisms depending on its concentration and speciation in solution. Human activities mobilize and spread large quantities of zinc broadly in the environment. Discriminating the natural and various anthropogenic zinc sources in the environment and understanding zinc's fate at a catchment scale are key challenges in preserving the environment. This review presents the state of the art in zinc isotope studies applied to environmental purposes at a river-basin scale. Even though the study of zinc isotopes remains less developed than more traditional lead isotopes, we can assess their potential for being a relevant tracer of zinc in the environment. We present the principles of zinc isotope measurements from collecting samples to mass spectrometry analysis. To understand the fate of zinc released in the environment by anthropogenic activities, we summarize the main processes governing zinc distribution between the dissolved and solid phases, with a focus on the isotope fractionation effects that can modify the initial signature of the various zinc sources. The signatures of zinc isotopes are defined for the main natural sources of zinc in the environment: bulk silicate earth (BSE), zinc sulfide ore deposits, and coal signatures. Rivers draining natural environments define the geological background for surface water, which is close to the BSE value. We present the main anthropogenic sources (metallurgical waste, effluents, fertilizers, etc.) with their respective isotope signatures and the main processes leading to these specific isotope characteristics. We discuss the impact of the various anthropogenic zinc emissions based on the available studies based on zinc isotopes. This literature review points out current knowledge gaps and proposes future directions to make zinc isotopes a relevant tracer of zinc (and associated trace metals) sources and fate at a catchment scale.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据