4.3 Article

Revealing binding selectivity of inhibitors toward bromodomain-containing proteins 2 and 4 using multiple short molecular dynamics simulations and free energy analyses

期刊

SAR AND QSAR IN ENVIRONMENTAL RESEARCH
卷 31, 期 5, 页码 373-398

出版社

TAYLOR & FRANCIS LTD
DOI: 10.1080/1062936X.2020.1748107

关键词

Bromodomain-containing proteins 2 and 4; MSMD; MM-GBSA; binding selectivity; principal component analysis

资金

  1. National Natural Science Foundation of China [21863003]
  2. Science Foundation of Shandong Jiaotong University [Z201703, Z201206, Z201202]

向作者/读者索取更多资源

Emerging evidences indicate bromodomain-containing proteins 2 and 4 (BRD2 and BRD4) play critical roles in cancers, inflammations, cardiovascular diseases and other pathologies. Multiple short molecular dynamics (MSMD) simulations combined with molecular mechanics generalized Born surface area (MM-GBSA) method were applied to investigate the binding selectivity of three inhibitors 87D, 88M and 89G towards BRD2 over BRD4. The root-mean-square fluctuation (RMSF) analysis indicates that the structural flexibility of BRD4 is stronger than that of BRD2. Moreover the calculated distances between the Ca atoms in the centres of the ZA_loop and BC_loop of BRD4 are also bigger than that of BRD2. The rank of binding free energies calculated using MM-GBSA method agrees well with that determined by experimental data. The results show that 87D can bind more favourably to BRD2 than BRD4, while 88M has better selectivity on BRD4 over BRD2. Residue-based free-energy decomposition method was utilized to estimate the inhibitor-residue interaction spectrum and the results not only identify the hot interaction spots of inhibitors with BRD2 and BRD4, but also demonstrate that several common residues, including (W370, W374), (P371, P375), (V376, V380) and (L381, L385) belonging to (BRD2, BRD4), generate significant binding difference of inhibitors to BRD2 and BRD4.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据