4.7 Article

Region-based toolpath generation for robotic milling of freeform surfaces with stiffness optimization

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.rcim.2020.101953

关键词

Robotic milling; Stiffness optimization; Posture optimization; Toolpath generation

资金

  1. National Nature Science Foundation of China [51775192]
  2. Science & Technology Research Program of Guangdong, China [2015B090922010, 2017B010110010]

向作者/读者索取更多资源

Because of industrial robots' relatively low stiffness, many research efforts have been performed to improve the robot stiffness by optimizing the robot posture. For freeform surfaces with large curvature, however, the expected high stiffness posture may undergo excessive changes that exceed the robot joint speed limit. Therefore, the stiffness optimization may not achieve the expected results in actual machining owing to the limitation of robot kinematics and conventional toolpath pattern. To address this problem, a region-based toolpath generation method is proposed to improve robot stiffness in this study for robotic milling of freeform surfaces. To provide the possibility of higher stiffness robot posture, not only the redundant degree of freedom (DOF) of the robot but also the orientation of tool axis during machining is optimized. Under the influence of surface curvature and position, the change of high stiffness posture has regionality. A surface subdivision method is proposed to divide the surface into multiple sub-regions, so that actual robot posture with better stiffness can be obtained. For each sub-region, the feed direction of toolpath is optimized to further enhance robot stiffness. Simulations and experimental studies are conducted, and show that the proposed toolpath generation method can improve the robot stiffness in freeform surface machining.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据